7^(2x)x5^(3x)=21/25

Simple and best practice solution for 7^(2x)x5^(3x)=21/25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^(2x)x5^(3x)=21/25 equation:



7^(2x)x5^(3x)=21/25
We move all terms to the left:
7^(2x)x5^(3x)-(21/25)=0
We add all the numbers together, and all the variables
7^2xx5^3x-(+21/25)=0
We get rid of parentheses
7^2xx5^3x-21/25=0
We multiply all the terms by the denominator
7^2xx5^3x*25-21=0
Wy multiply elements
175x^2-21=0
a = 175; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·175·(-21)
Δ = 14700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14700}=\sqrt{4900*3}=\sqrt{4900}*\sqrt{3}=70\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-70\sqrt{3}}{2*175}=\frac{0-70\sqrt{3}}{350} =-\frac{70\sqrt{3}}{350} =-\frac{\sqrt{3}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+70\sqrt{3}}{2*175}=\frac{0+70\sqrt{3}}{350} =\frac{70\sqrt{3}}{350} =\frac{\sqrt{3}}{5} $

See similar equations:

| 3w+3(w+8)=12 | | 5.2x+6.2=8.7 | | 2+y/2=5 | | 5.2x=2.5 | | 8+v/8=11 | | 3f-14=34 | | (9y+3)=(27+9y) | | 2n61/5=19 | | 2/3∙z=11/9 | | 10g+12=72 | | (9y=3)=(27+9y) | | 2/3.z=11/9 | | 4x-9=2x5 | | 8x*4-2x^2=0 | | 3(x^2+2x+1)+31=0 | | 10+v/6=10 | | –2(4x–9)+5x–3=52 | | -98+r=-64 | | -20y+10y+10+10=-40* | | 2+v/5=6 | | y=(-1)+12 | | 6d-12=60 | | 6x-11=9x+21 | | 5=m/15 | | 5x(36÷9)-5=N | | 9f-10=8 | | -7x+9=13x-41 | | (x/7)+10=7 | | 16/5=3x(+5/1) | | 135=5k | | n-(-59)=-210 | | 4/v=7/17 |

Equations solver categories